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Abstract. Zinc is a high-level constraint modelling language with sup-
port for decision variables of complex types. Current constraint solvers
only support decision variables of a subset of the types Zinc offers. There-
fore, these variables and the constraints that involve them need to be re-
duced to a form that is supported by the target solvers. In this paper, we
show how to reduce the type of decision variables in a systematic way,
independent of a model’s instance data. We use the Cadmium model
transformation language for a concise and modular implementation of
these transformations.

1 Introduction

Zinc is a modern high-level constraint modelling language [1]. It offers decision
variables of a wide variety of types as well as constraints that operate on them.
As a consequence, constraint models in Zinc can be compact and close to their
natural language description, and designing and maintaining models is much
simplified.

A Zinc model typically needs to be converted to a simpler, equivalent model
before it can be solved by current solvers because they only support a subset
of the variable types that Zinc offers. This means decision variables of types
that are not supported need to be represented by ones of supported types, and
constraints over variables of unsupported types need to be represented by ones
over variables of supported types. Which variable types need to be eliminated
depends on the solver designated to handle the corresponding constraints. For
instance, a Finite Domain (FD) solver may support set variables, whereas Mixed
Integer Programming (MIP) solvers do not. Therefore, we want to choose which
type reduction transformations are run, independently of each other.

In the G12 implementation of Zinc [2], we do type reduction by means of Zinc-
to-Zinc transformations written in Cadmium, a purpose-designed, rule-based
model transformation language [3]. We support the following reductions:

– from enumeration to integer range
– from record or tuple to its components
– from set of a finite type to set of an integer range
– from set of a finite type T to array of Booleans, indexed by T .



The latter two reduce the same type, but to a different target type. The first of
them can be used for solvers that support integer set variables only, the second
for solvers that do not support set variables regardless of the element type. After
type reducing these variable types away, the only remaining Zinc variable types
are Boolean, integer, float, and potentially integer set variables.1

Our type reduction transformations have the following significant features:

Zinc-to-Zinc: the result of the transformations is again Zinc. This allows type
reduction to be followed by other Zinc transformations.

Data independence: the transformations are independent of parameter val-
ues. Instance data need not be available at transformation time but can later
be supplied in data files.

Transparency: the original types remain available for input and output. Input
values of types not supported by the solver at hand are converted to values of
reduced types. After solving, solution values of a reduced type are converted
back, so the solution is returned using the original types.

Locality: type reduction only changes those parts of the model that contain
variables of unsupported type. It does not require flattening of the entire
model and deals with user-defined functions without requiring inlining.

High-level: the type reduction transformations are implemented using the
model transformation language Cadmium. This makes their development,
maintenance and extension comparatively easy in our experience.

The next section introduces Zinc, Cadmium, and the process of type reduction;
Section 3 shows how we can type-reduce set variables; Section 4 presents the
step-wise process we use to type-reduce a model; in Section 5 we give some
empirical evaluation; Section 6 discusses related work and concludes.

2 Preliminaries

Zinc. A Zinc model consists of a set of items, notably for variable/parameter
declaration, constraints, solving objective and output. A variable or parame-
ter declaration has the form T : X or T : X = E, where X is the name of
the variable, T is its type-inst and expression E is its optional assignment.2

A type-inst is the combination of a type (a set of values) and an instantiation
pattern, which determines which components of a variable are fixed when solving
starts. Examples of type-insts are int, var 0..1, tuple(bool, var float) and
array[int] of var set of 1..9, representing respectively an integer param-
eter, a binary (decision) variable, a tuple whose first field is a Boolean parameter
and whose second field is a float variable, and an array indexed by integers whose

1 Our current implementation also does not handle non-flat enumerations yet, but
adding support for them should be straightforward.

2 A parameter must be assigned but the assignment can be in a separate data file.



elements are set variables over 1..9. The distinction between variables and param-
eters, via the instantiation pattern in the type, is crucial for data independent
transformation and compilation of Zinc models.

A constraint item holds a constraint. A solve item states whether the aim
of solving is satisfaction, or optimisation in which case it also holds the objec-
tive function. An output item states how a solution to the problem should be
presented. There are other types of items; see [1] for more details.

Example 1. Here is a simple Zinc model:

int: c; % declare an integer parameter c

var set of 1..3: s; % declare a set variable subset of {1,2,3}

constraint card(s) = c; % enforce that the cardinality of s is c

solve satisfy; % search for any solution

output ["s = ", show(s)]; % output the resulting set

c = 2;

The last line defines the parameter c. It could be in a separate data file. ⊓⊔

Cadmium. Our Zinc transformations are implemented in Cadmium, a term
rewriting language supporting context sensitive rewriting and associative / com-
mutative operators [3]. Cadmium rules have the form CC \ H <=> G | B.
Such a rule states that a term matching H rewrites into B given that its con-
junctive context contains terms matching CC and the guard term G rewrites
into true. The conjunctive context of a term T consists of the terms that are
conjunctively conjoined with T or a superterm of T . If no reference to the con-
junctive context is needed then CC and the backslash (\) are omitted. If no
guard is needed then G and the | symbol are omitted.

Cadmium rewrites terms; therefore Zinc models need to be represented as
a term. A carefully designed term representation of Zinc exists that aims to
be unambiguous, compact, and easy to use at the same time. For instance, it
ensures that all variable declarations that hold at a given expression are in the
conjunctive context of the expression. For example, the following rule evaluates
the Zinc index_set function of an array whose declaration can be found in the
conjunctive context:

decl(array(IT, _), X, _, _, _) \ app("index_set", _, [id(X)]) <=>

is_finite_type_inst(IT) | type_inst_to_set(IT).

The decl/5 term represents a variable/parameter declaration with fields for
type-inst, name, assignment, identifier kind, and annotations. The app/3
term represents a predicate/function call. The is_finite_type_inst/1 guard
rewrites to true if its argument is a finite type-inst, and type_inst_to_set/1
rewrites a finite type-inst to the set of its values.

To improve the presentation of rules in this paper, we will use a variation of
standard Zinc syntax, using slanted type to distinguish it from Cadmium terms.
Here is the above rule in simplified syntax:



array[IT] of _ : X = _ \ index_set(X) <=>

is_finite_type_inst(IT) | type_inst_to_set(IT).

Evaluation stages. In our implementation of Zinc, models are compiled into
executables. An executable when run first reads any instance data files, then
processes the input data, solves the problem and finally generates output.

Input processing consists of computing derived parameter values, creating
variables and setting up constraints. Since data files can contain parameters of
arbitrary Zinc type, the complete Zinc language needs to be supported for param-
eter computations. This also holds for output generation, where computations
on the then fixed values of variables can take place.

Constraints can be formulated using variables of any type-inst supported by
Zinc. The aim of type reduction is to reduce the variable types that need to be
supported by solver constraints by shifting conversion work to input and output
processing stages.

Example 2. For use with a solver that does not support set variables, we can
reduce the model of Example 1 to the following:

int: c;

array[1..3] of var bool: s; % changed

constraint sum(e in 1..3)(bool2int(s[e])) = c; % changed

solve satisfy;

output ["s = ", show({e | e in 1..3 where fix(s)[e]})]; % changed

The set variable s is reduced to a Boolean array and the constraint is mapped
accordingly. The occurrence of s in the output statement is replaced by an
expression that converts the reduced value of s to the corresponding value of
its original type. The Boolean array is converted to a set by taking those values
from the index set of the array for which the array element equals true. Note
that set s is fixed at this point, and we can apply the fix function to use s where
a fixed value is expected by Zinc (where clauses in comprehensions need to be
fixed). The cardinality of a set variable is converted to an expression with the
same semantics, but operating on the reduced value. In this case, the expression
is the sum of bool2int (which maps true to 1 and false to 0) applied to each
array element. ⊓⊔

In the preceding example, we did not need to change the types of input
parameters. The following is an example where we do.

Example 3. Consider the following model:

enum e; % declare an enumeration type (defined in data file)

e: p; % declare a constant p of type e (defined in data file)

var e: v; % declare a variable v of type e

constraint p = v; % enforce p = v

solve satisfy; % search for any solution

output [show(v)]; % output the result



Assume a solver that does not support enums. The enum type e and parameter
p are declared in the model but defined in a data file.

enum e; % declare an enumeration type (defined in data file)

e: p; % declare a constant p of type e (defined in data file)

1..card(e): p_reduced = inverse_lookup(p, e); % type reduced p

var 1..card(e): v; % type reduced v as integer

constraint p_reduced = v; % enforce p = v

solve satisfy; % search for any solution

output [show(e[fix(v)])]; % output result by looking up entry in enum

Because the data file still refers to parameter p, we need to use a new name for the
reduced version: p_reduced. In Zinc, the name of an enum (e.g. e) can be used
as an expression that stands for the set of its cases. A set can in turn be coerced
into an array. The function inverse_lookup(v, a) returns the (first) position of
v in array a. Input processing converts parameter p into p_reduced which has
reduced type 1..card(e). The reduced type is given in a data independent way,
i.e. independent of the definition of e. The value of p_reduced is the position of
p in the ordered set of cases of e; e.g. if e = {red, green, blue} and p = green,
then p_reduced= 2. In the output statement, the value of the reduced variable v
is converted into the corresponding enum value. The equality constraint between
enums becomes an equality constraint between integers. ⊓⊔

3 Encoding Type Reduced Set Variables in Zinc

This section presents some alternative encodings for set variables in Zinc. Similar
encodings have been proposed before, see e.g. [4], but their data-independent
representation in Zinc is novel. We note that because of the data independence,
using these reduced representations does not fundamentally increase the model
size.

3.1 Reducing the element type of set variables

Zinc supports set variables of any finite type, i.e. involving nested tuples, records,
sets and arrays. Solvers for set variables typically only support them for restricted
element types, most notably integer ranges. Therefore, one aspect of type reduc-
tion for set variables concerns the set element type: if it is not supported as
element type, we can reduce it to an integer range. Every finite type can be
represented as the set of values of its base type. E.g. bool = {false, true}

and set of 1..2 = {{}, {1}, {2}, {1, 2}}. A simple conversion from any
finite type to an integer range is made by mapping each value to its position
in the ordered list of all values. However, in general, we may need to perform
the conversion on variables of the set element type, and in such cases it may
be beneficial to use a specialised conversion function that leads to more propa-
gation. With this encoding, it is up to the solver to choose a suitable low-level
representation for the resulting set variable.



3.2 Eliminating set variables

If set variables are not supported by the target solver, they need to be reduced
to a type that is supported. The two main alternatives, shown below, are as an
array of Boolean variables, and as an array of set elements. The latter is useful
if we have a strong bound on the cardinality of the set.

f1

var set of $T(X) = [i:i in X | i in type inst to set($T)]

f2

var set of $T(X) = let { var l..u: c,

(array[1..u] of var $T: s where

forall(i in 1..u− 1)

(i <= c -> s[i] < s[i+1])): s } in (s, c)

For the second representation, we assume l and u are respectively a lower and
an upper bound on the cardinality of the set. One can then define an array
of size u whose first c elements are the elements in the set variable. We can
then use a constrained type to require these elements to be ordered so as to
remove symmetries (forall constraint). Note that the second representation
requires that variables of the set element type are supported; we cannot use it
for variable sets of strings, for instance. In our current implementation, we only
use the first representation, but we plan to support the second one in future
work.

4 Data Independent Type Reduction

In this section, we present the process of type reduction. We start this process by
type reducing variables and function definitions. Then, we type reduce expres-
sions. The whole process is deterministic as we currently only use one encoding
scheme. In the future, we may add alternative encodings, which will be selected
by means of annotations.

4.1 Parameters and variables

Parameters or decision variables may need to be type-reduced to eliminate un-
supported types from the constraints. A compound type-inst, such as a tuple
or array, may be unsupported because of its components. For instance, a solver
may support arrays of integers but not of enums.

Assigned values are reduced by applying a conversion function. Values of a
compound type-inst that is not fully supported are deconstructed, have their
unsupported components reduced, and are then reconstructed again. In Zinc,
this can be done in a functional way without using constraints.

Example 4. Let e be an enum type in the following declarations:



e: p1 = x1;

tuple(e, int): p2 = x2;

set of e: p3 = x3;

array[e] of e: p4 = x4;

Eliminating e, they are reduced to

1..card(e): p1 = inverse_lookup(x1, e);

tuple(1..card(e), int): p2 = (inverse_lookup(x2.1, e), x2.2);

set of 1..card(e): p3 = {inverse_lookup(x, e) | x in x3};

array[1..card(e)] of 1..card(e): p4 =

[inverse_lookup(x4[x],e) | x in e]; ⊓⊔

When reducing a variable V of type T, we reduce its assignment if present and
replace its occurrences in constraints by unreduceT(V) :: type reduced as(V).
unreduceT converts a value of the reduced type to its corresponding value of
original type T. The :: operator separates a term and its annotation. The
type_reduced_as/1 annotation contains the reduced expression (i.e. V). In prac-
tice, we also keep track of how an expression is reduced in the annotation, i.e.
which components of the expression are reduced (if it has a compound type such
as a tuple or array type), and which representation is used for the reduced value.
We have omitted these details from the annotation to simplify the presentation.
Note that after type reducing variables, we have a valid Zinc model with the
same semantics as the original.

Example 5. Given the model fragment

var set of 1..3: s;

constraint card(s) > 1;

type reduction of set variables results in

array[1..3] of var bool: s;

constraint card(new2old_var(s) :: type_reduced_as(s)) > 1;

We define the following conversion functions:

function var set of $T: new2old_var(array[$T] of var bool: a);

function set of $T: new2old_par(array[$T] of bool: a) =

{e | e in index_set(a) where a[e]};

function array[$T] of var bool: old2new_var(var set of $T: s);

function array[$T] of bool: old2new_par( set of $T: s) =

[e : true | e in s];

The function new2old_var is declared but not defined. It only serves to keep
the model valid during type reduction; all calls to it are removed when type
reduction finishes. new2old_par is used to convert the values of reduced set
variables back to set values for outputting after solving. old2new_var is the
inverse function to new2old_var and is used similarly; they simplify away as per
old2new_var(new2old_var(X)) = X . Finally, old2new_par is used to convert
fixed sets to their reduced representation in contexts where a set decision variable
is expected. ⊓⊔



A type may be reduced in different ways depending on the context; cf. Sec-
tion 3.2. The best representation may depend on the specific solvers used and
on the constraints in which the variable appears. Furthermore, we could also
support multiple representations and link them via channelling constraints [5],
although this is currently not implemented.

The above transformation is applied to global and local variables and pa-
rameters, comprehension generators and variables used in defining an arbitrar-
ily constrained type-inst as part of a variable declaration being reduced. It is
not applied to function arguments (for these, see the following section) and to
variables that are introduced during the transformation.

4.2 Predicate and function definitions

Zinc supports user-defined functions and predicates (functions with a return type
of var bool). They may apply to expressions of an unsupported type-inst. We
create reduced versions of such functions and replace calls accordingly.

Example 6. Consider the following polymorphic function:

function var set of $T: set_op(var set of $T: s1, var set of $T: s2) =

if card(ub(s1)) > card(ub(s2))

then s1 diff s2 else s2 diff s1 endif;

One could inline the above function definition in a call such as set_op(s1, s2).
However, inlining cannot always be used when dealing with higher-order func-
tions (foldl and foldr), e.g. in the call foldl(set_op, {}, a) where the array
a is only known once the instance data is available. ⊓⊔

Type reducing a function consists of type reducing the formal arguments and
result type, followed by type reducing the body expression. The type reduction
of formal arguments is essentially the same as the type reduction of variables
and parameters described earlier. We only reduce the formal arguments of the
reduced versions of functions, and we keep the original function definitions to
ensure the model is valid Zinc at every stage of the type reduction process. We
annotate the reduced version of a function to link it with its original. The type
reduction of expressions is described in Section 4.3 below.

Example 7. The result of the first step of type reducing set_op is shown below.
For conciseness, we have merged the conversions from reduced arguments s1 and
s2 to their respective original values using let variables.

function array[$T] of var bool: set_op_reduced(array[$T] of var bool: s1,

array[$T] of var bool: s2) :: type_reduction_of(set_op) =

let { var set of $T: s′1 = new2old_var(s1),

var set of $T: s′2 = new2old_var(s2) }

in old2new_var( if card(ub(s′1 :: Ann1) > card(ub(s′2 :: Ann2))

then s′1 :: Ann1 diff s′2 :: Ann2

else s′2 :: Ann2 diff s′1 :: Ann1 endif );

Here, Annk stands for type_reduced_as(sk). ⊓⊔



Function specialisation. One difficulty with type reducing functions is that
we sometimes treat fixed and unfixed values differently, e.g. set variables are
reduced but set parameters are not. This means that expressions whose type-
insts match the same type-inst variable may no longer do so after type reduction.

Example 8. Consider the following function and declarations

function var bool: my_eq(any $T: a1, any $T: a2) = (a1 = a2);

var set of 1..3: s1;

set of 1..3: s2;

Then my_eq(s1, s2) is a valid expression. But after type reducing s1 into
a Boolean array, we have that my_eq(s1, s2) is no longer valid: while the
type-insts of s1, s2, namely var set of 1..3 and set of 1..3, resp., both
match type-inst variable any $T, the same does not hold for the new type-insts,
array[1..3] of var bool and set of 1..3, resp. ⊓⊔

To deal with this problem, we specialise such functions for each combination
of (base) type-insts for which it is called. So for instance, if there is a call
my_eq(s1, s2), then we create a specialised version of my_eq:

function var bool: my_eq(var set of $T: a1, set of $T: a2) = (a1 = a2);

which is subsequently reduced.

Empty sets. A related problem is that in Zinc there is a distinction between
explicitly and implicitly indexed arrays, based on the finiteness of the array index
type. If an array is indexed by a finite type, then its index set must exactly be
this type. This becomes an issue when coercing the empty set into a var set of
some type. In case we coerce the empty set to a var set of a finite type, then the
type-reduced value must be an array indexed by all values of this finite type,
where each element equals false. However, if we coerce the empty set to a var
set of infinite type, then we can return an empty array. E.g. a coercion of {} to
var set of bool becomes [false:false, true:false] whereas a coercion of
{} to var set of int becomes [].

In function definitions, we may see a coercion from the empty set to
var set of $T with $T a type-inst variable. Since we do not know the value of
$T, we do not know how to convert the empty set to an array. Therefore, we also
need to specialise functions here, for each call pattern of functions in which an
empty set is coerced into a var set of a type-inst variable.

4.3 Expressions

To type reduce constraint expressions, we apply a bottom-up approach. We first
annotate expressions of an unsupported type-inst that do not contain a proper
such subexpression. This is similar to how we annotate (and revert the reduc-
tion of) variables of an unsupported type-inst. The annotation again contains a
reduced version of the expression. It principally concerns the following types of
expressions:



– the (implicit) coercion of an expression of supported type-inst, to an unsup-
ported one, e.g. a set parameter used in a position where a set variable is
expected, such as in a function application, or a coercion of a tuple to a
record if we do not support records;

– the application of a user-defined function whose return type-inst is unsup-
ported, but whose arguments all have supported type-insts;

– the application of a built-in that returns a varified3 version of one of its
arguments: an array access where the index is not fixed, or the minimum or
maximum of two or more expressions, where at least one of them is not fixed;
note that such built-ins cannot be typed correctly in Zinc in a polymorphic
way because the result type-inst is varified and not all type-insts can be.

The last type of expression is only relevant if variables of a given type are
supported but parameters are not.

Example 9 (Minimum). Let there be given the expression min(t1, t2) in a
context with the following variable declarations:

var int: i;

tuple(var int, set of int): t1 = (i, {1, 3});

tuple(var int, set of int): t2 = (0, {2, 4});

Assume that t1 and t2 both have a supported type-inst, but min(t1, t2)

does not (it has type-inst tuple(var int, var set of int)). First, we varify
and reduce t1 and t2, which means that the second field of each tuple is converted
to a Boolean array. We ensure that they are reduced in exactly the same way,
that is, the resulting arrays have the same index sets, so that we can use the
standard comparison operations to determine which of t1 and t2 is the smallest.
Unfortunately, we cannot just apply min to the reduced versions of t1 and t2,
as unlike sets, arrays are not varifiable (even if they have the same index set),
so instead, we produce the following:

let { tuple(var int, array[1..4] of var bool): t′1 =

(t1.1, [e in t1.2 | e in 1..4]),

tuple(var int, array[1..4] of var bool): t′2 =

(t2.1, [e in t2.2 | e in 1..4]),

(tuple(var int, array[1..4] of var bool): x where

(x = t′1 \/ x = t′2) /\ x <= t′1 /\ x <= t′2): m }

in m

That is, the result is a variable of constrained type-inst that is constrained to be
smaller than or equal to the reduced versions of t1 and t2, and equal to either
of them. ⊓⊔

After reducing the base cases, we deal with those expressions that have a
proper subexpression that is reduced. Most notably, we need to deal with appli-
cations of built-in operators and functions, applications of user-defined functions,
and structured term construction and access.
3 A type-inst is varified by making all its fixed components unfixed. E.g. varifying type-
inst tuple(var int, set of int) results in tuple(var int, var set of int).



For each built-in operator and function, we define what the result should be
if it is applied to a reduced expression.

Example 10. The in operator where the second argument is a reduced set vari-
able, is converted into an array access. The Cadmium rule for this is:

E in (_ :: type_reduced_as(New)) <=> New[E].

The length of an array whose elements are reduced is just the length of the
reduced array:

length(_ :: type_reduced_as(New)) <=> length(New).

The head of an array whose elements are reduced is the head of the reduced
array. This expression itself is again reduced:

head(Old :: type_reduced_as(New)) <=>

head(Old) :: type_reduced_as(head(New)).

Now, since an array may be reduced only because of its index type (e.g. if
the array has type array[e] of int with e an enum type), we may have
that the above rule returns an expression that is marked as being type re-
duced, whereas it is not. An example of this is head([red:1, black:2] ::

type reduced as([1:1, 2:2])) which becomes head([red:1, black:2]) ::

type reduced as(head([1:1, 2;2])). Therefore, we add a rule

X :: type_reduced_as(Y) <=> base_type(X) = base_type(Y) | Y.

which replaces an expression by its reduction if both have the same base type.
The union of two reduced var sets is translated into a call to a type-reduced

version of it, called reduced_union, by the following rule:

function RT: F_reduced(A1, A2) :: type_reduction_of(F) = _ \

F(O1 :: type_reduced_as(N1), O2 :: type_reduced_as(N2)) <=>

F(O1, O2) :: type_reduced_as(F_reduced(N1, N2)).

The rule applies to a call to binary function F for which a type-reduced version
F_reduced is defined, and for which the actual arguments are both type-reduced.
The above rule is only a simplified version: the actual rule deals with any arity
of function, any combination of arguments being type-reduced, and ensures that
the reduced function is the one to be used here (with respect to overloading).
The function reduced_union is defined as follows:

function array[$T] of var bool:

reduced_union(array[$T] of var bool: a1, array[$T] of var bool: a2) ::

type_reduction_of(union) =

[ if x in index_set(a1)

then if x in index_set(a2) then a1[x] \/ a2[x] else a1[x] endif

else a2[x] endif

| x in index_set(a1) union index_set(a2) ];

and so union(S1 :: type reduced as(A1), S2 :: type reduced as(A2)

becomes union(S1, S2) :: type reduced as(reduced union(A1, A2)). ⊓⊔



4.4 Contexts that expect a type-reduced value

Expressions occur in a context that expects them to have a certain type-inst.
For example, an expression that is the argument of a constraint item should
have a type-inst of (var) bool and an expression that forms the assignment of
a variable of type-inst T should be of that type-inst. Type reduction can change
the expected type-inst of an expression to a reduced type-inst, and so we add
an explicit conversion from the original type-inst to the reduced one. We have
seen examples of this in Section 4.1 (assignment to variables) and Section 4.2
(body of a function definition). After type-reduction, we have no more calls to
functions that require solver support for the type-insts we are reducing away
(e.g. the functions old2new_var and new2old_var used for converting between
set variables and Boolean arrays in Example 7).

Example 11. Consider again the function set_op and its (partial) reduction into
function set_op red from Example 7. After type-reducing expressions, we get

function array[$T] of var bool: set_op_reduced(array[$T] of var bool: s1,

array[$T] of var bool: s2) :: type_reduction_of(set_op) =

let { array[$T] of var bool: result =

if reduced_card(ub(s1)) > reduced_card(ub(s2))

then reduced_diff(s1, s2)

else reduced_diff(s2, s1) endif }

in old2new_var(new2old_var(result) :: Ann);

which further simplifies to

function array[$T] of var bool: set_op_reduced(array[$T] of var bool: s1,

array[$T] of var bool: s2) :: type_reduction_of(set_op) =

if reduced_card(ub(s1)) > reduced_card(ub(s2))

then reduced_diff(s1, s2) else reduced_diff(s2, s1) endif;

with reduced_card/1 and reduced_diff/2 reduced versions of card/1 and
diff/2. The upper bound (ub) of a reduced set is equal to the reduction of
the upper bound of the original set. ⊓⊔

5 Practical Evaluation

Type reduction is now an integral part of the Zinc compiler, and it is run on
every input model. On a suite of 49 Zinc examples, the system identified 15
for which type reduction was required (given a solver that supports Boolean,
integer, float and integer set variables). Eight of them contained enum variables,
six contained set variables with non-integer element types (enum, record and
tuple), and two contained tuple variables. Type reduction applied on the Zinc
regression suite of 380 tests, detects 48 that require type reduction. We expect
as modellers become more aware of the high level modelling facilities of Zinc,
the proportion of models requiring type reduction will grow.

While in most cases type reduction is necessary to make a model acceptable
to solvers in the first place, we can also apply type reduction to types that



Model Instance Original Type Reduced
Cd Post Search Cd Post Search

steiner triples n = 7 5.38s 0.01s 1.23s 7.37s 0.01s 1.33s
n = 8 0.01s 141.89s 0.01s 145.78s

social golfers players: 15, size: 3, weeks: 5 6.32s 0.12s 8.51s 9.69s 1.76s 5.43s
players: 24, size: 4, weeks: 5 0.24s 58.53s 7.06s 58.34s

trucking periods: 8, trucks: 4 4.19s 0.00s 3.93s 5.75s 0.01s 2.51s
periods: 7, trucks: 5 0.00s 196.35s 0.01s 139.85s

round robin 10 teams 5.52s 0.29s 14.38s 10.08s 3.82s 19.53s

Table 1. Run times of models with/without type reduction of set variables: Cd times
the Zinc-to-Zinc Cadmium transformation (data independent); Post is the time to post
the constraints and do the initial propagation; Search is the time spent on searching.

are supported by the target solver, such as integer set variables in the G12
FD solver. In this solver, a set variable is represented by its lower bound (i.e.
all elements that must be in it), upper bound (all elements that can be in it)
and cardinality. Our reduced representation of sets as Boolean arrays does not
represent the cardinality explicitly, which may cause it to perform worse on
models involving cardinality constraints. We compared the run times of models
with integer set variables with and without type reduction of these set variables,
using the G12 FD solver. For a meaningful comparison, we ensured that the
search strategy remains unchanged. The default search strategy in the FD solver
prefers searching Booleans over integers and integers over sets. We postpone the
search of Booleans representing set variables in the original model, and ensure
that the variable and value selection of unreduced and reduced set variables is the
same. Table 1 shows the run times of the original and reduced models (split into
posting and search). The results show that the type reduction of set variables
to Boolean arrays has little effect for the FD solver. Results for different solvers
may vary of course.

6 Related Work and Conclusion

The F language [6] is a constraint modelling language supporting function vari-
ables, i.e. variables that take a function as their value. An F model is translated
to a set of alternative models in the lower level language L (that does not support
function variables) using the Fiona modelling tool. The generation of L models
is done using F -to-L rewrite rules. One important limitation of that work is
that it cannot deal with arbitrarily nested expressions, whereas our approach
can. Zinc does not support function variables, and so the actual rewrite rules
for F are not relevant for Zinc. F was followed up by esra [7] which extends it
with more variable types.

The s-COMMA platform [8] consists of an object-oriented solver indepen-
dent constraint modelling language whose models can be translated to different



solvers. During the transformation process, the model is combined with instance
data and flattened. Enum variables are reduced to integers as in our work.

Essence [9] is a specification language for CSPs and shares many features
with Zinc. It offers the following structured types: sets, multisets, matrices (ar-
rays), relations, functions, and partitions. Similarly to Zinc, Essence models
are transformed into a lower-level language (Essence′). This transformation is
done by means of rules written in Conjure [10], part of which are for getting
rid of those complex types that are not supported by the target solvers. Some
important differences with that work follow.

The connection between the original problem variables and parameters, and
the reduced ones, is not maintained. Features needed for this are an output
statement and comprehensions (or some other way to traverse and construct sets,
arrays and such). Essence only supports a limited form of structure iteration in
the form of the ∀, ∃ and

∑
constructs. This means that e.g. we can only convert

a set to an array of bool by means of equality constraints in a ∀ quantification.

In Conjure, the result of refining an expression, is a new expression, po-
tentially tagged with a set of constraints. These constraints need to be lifted to
the top, and so each rule that refines subexpressions during its execution, needs
to state explicitly what to do with the constraints that might result from these
refinements. Furthermore, the control flow in Conjure is top-down, whereas re-
finement is to take place from the bottom up (i.e. we first need to know how an
expression’s components are refined, before we can refine the expression itself),
so each rule in Conjure calls explicitly for the refinement of subexpressions of
the expression at hand.

Our approach does not exhibit the same drawbacks because of two reasons.
Firstly, the Zinc language offers two features that enable us to encapsulate con-
straints, namely let expressions and arbitrarily constrained type-insts. By en-
capsulating constraints, we can separate the problem of lifting them from the
problem of type reduction. In particular, we have separate transformations for
let lifting and for constrained type elimination. Secondly, Cadmium, being a
term-rewriting system, works from the bottom up, and so we do not need to at-
tempt refining expressions that do not contain subexpressions of an unsupported
type-inst. Furthermore, we do not need to explicitly program the desired control
flow: it is already implicitly there.

Finally, our rules do not require flattening of expressions. Flattening is needed
in Essence because it does not allow value conversion as an expression. In Zinc,
such a value conversion can be done using comprehensions, let expressions and
arbitrarily constrained type-insts.

High-level modelling allows constraint programmers to build models closer to
the problem specification by using complex types for variables and parameters.
But current solvers do not implement complex variables types. Type reduction
is an important part of transforming Zinc models to ones in a subset of Zinc
that solvers understand. Without type reduction, we would not have support for
tuple and record variables, enum variables, or variable sets of arbitrary element
types. It forms the starting point for transformations such as linearisation, which



creates models that can be solved by MIP solvers, or Booleanisation, which
creates models for SAT solvers.

Type reduction has proven to be more difficult than we originally anticipated.
One reason is the expressiveness of the Zinc language, which has many features
that make modelling easier, but increase the burden on model transformation
tools. Another is the data independence, which means that model transforma-
tions cannot rely on flattening, function inlining etc. During the development of
our transformations, we encountered some difficulties that stem from limitations
of Zinc as a target language. One of them is that Zinc does not allow arbitrary
set expressions to be used as a type, even though it is only a syntactic restric-
tion as sets can always be given a name. Another difficulty is in the difference
between implicitly and explicitly indexed arrays. In particular, if an array is de-
clared with a finite index type, then its index set must be exactly that type and
cannot be a subset of it.

Our type reduction transformations will be part of the upcoming Zinc release.
In future work, we plan to add support for annotations on how to reduce

variables and constraints involving them. In related work, such as on esra [7]
and Essence [9], it has been proposed to generate all possible models and then
select a good one using some criteria. In the context of Zinc, we plan first to
allow the modeller to steer the reduction process using annotations.
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